Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Necmi Dege, ${ }^{\text {a }}$ * Memet Sekerci, ${ }^{\text {b }}$
Ahmet Cetin, ${ }^{\text {b }}$ Muharrem
Dinçer, ${ }^{\text {a }}$ Mehmet Gülcan, ${ }^{\text {b }}$
Ahmet Cansız ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\mathbf{a}}$
${ }^{\text {a }}$ University of Ondokuz Mayıs, Faculty of Arts and Sciences, Department of Physics, 55139-
Samsun, Turkey, and ${ }^{\mathbf{b}}$ Frrat University, Arts and Sciences Faculty, Department of Chemistry, 23119-Elazıg̃, Turkey

Correspondence e-mail: dege@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.105$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-Amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$, the two phenyl rings are approximately orthogonal. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate dimers. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions.

Comment

α, β-Unsaturated ketones and their derivatives have been obtained by Claisen-Schmidt reactions of furfural and p-substituted acetophenones. These substances were screened for their in vitro antimicrobial activity against some bacteria, employing the disc-diffusion technique (Çetin et al., 2003). Transition metal complexes with pyrimidine derivatives are also of special interest (Sönmez et al., 2004; Reinert et al., 1969). The title compound, (V), was prepared as described previously (Altural et al., 1989). In the present study, (V) was synthesized by the reaction of 4-benzoyl-5-phenylfuran-2,3dione, (IV), and (1Z)-1-phenylethan-1-one semicarbazone in moderate yield ($45-60 \%$). The 2,3-dione derivative was synthesized from the reaction of dibenzal, (III), with α, β unsaturated ketone (I). Compound (I) was obtained by Claisen-Schmidt reaction of benzaldehyde and acetophenone. The reaction sequences depicted in the scheme were followed to obtain (V). Initially, the atomic connectivity in (V) was elucidated from IR and ${ }^{1} \mathrm{H}$ NMR spectra.

(V)
(I)

(IV)

Received 15 November 2004 Accepted 22 November 2004 Online 27 November 2004

The pyrimidine ring in (V) (Fig. 1) is essentially planar, with a maximum deviation of 0.053 (1) \AA for atom C8. The phenyl rings $A(\mathrm{C} 1-\mathrm{C} 6)$ and $B(\mathrm{C} 12-\mathrm{C} 17)$ form dihedral angles of 41.05 (5) and $74.84(3)^{\circ}$, respectively, with the pyrimidine ring. There are two types of intermolecular hydrogen bonds. In the first of these intermolecular interactions, atom N3 acts as a hydrogen-bond donor to $\mathrm{O} 2^{i}$ [symmetry code: (i) $1-x,-y$, $-z]$. The $\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogen bond links inversionrelated molecules into dimers. In the second type, atom N3 acts as a donor to O 1 at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ (Fig. 3 and Table 2). The crystal structure also contains $\mathrm{N} 3-\mathrm{H} 3 A \cdots \pi$ and $\mathrm{C} 3-$ $\mathrm{H} 3 C \cdots \pi$ interactions with the centroid, $C g P$, of ring B (atoms C12-C17; Fig. 2 and Table 2).

Figure 1
An ORTEP-3 (Farrugia, 1997) plot of (V), showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are drawn as spheres of arbitrary radii.

Experimental

A mixture of 4-benzoyl-5-phenylfuran-2,3-dione (1g), (IV), and (1Z)-1-phenylethan-1-one semicarbazone $(0.56 \mathrm{~g})$ (molar ratio 1:1) was refluxed in toluene for 45 min . After cooling, the solid was washed and dried. Water (15 ml) was added to a solution of Schiff base $(1 \mathrm{~g})$ in acetic acid $(5 \mathrm{ml})$ and the mixture was then heated under reflux for 30 min . The resulting precipitate was filtered off and then crystallized from a mixture of ethanol-chloroform (3:1) (yield 50%; m.p. 477 K). IR ($\left.\mathrm{cm}^{-1}, v\right)$: 3297-3176, $1639\left(\mathrm{NH}_{2}\right), 3041$ (Ar CH), 1683, $1657(\mathrm{C}=\mathrm{O}), 1581(\mathrm{Ar} \mathrm{C=}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR: $\delta 5.37\left(b r, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 7.02-7.08 ($m, 10 \mathrm{H}, \operatorname{Ar} \mathrm{H}$), $8.29(s, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}-\mathrm{N})$; Calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (291): C 70.09, H 4.50, N 14.42\%; found: C 70.05, H 4.56, N 14.32%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=291.30$
Monoclinic, $P 2_{1} / c$
$a=11.7547(11) \AA$
$b=16.6566(11) \AA$
$c=7.2986(6) \AA$
$\beta=101.722(7)^{\circ}$
$V=1399.2(2) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: none 9982 measured reflections 3605 independent reflections 2612 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.04$
3605 reflections
252 parameters
All H -atom parameters refined
$D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8786
\quad reflections
$\theta=1.8-28.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, light yellow
$0.61 \times 0.46 \times 0.23 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.029 \\
& \theta_{\max }=28.8^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=-22 \rightarrow 22 \\
& l=-9 \rightarrow 7
\end{aligned}
$$

[^1]

Part of the crystal structure of (V). Dashed lines show $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions.

Figure 3
The crystal packing of (V), showing the hydrogen-bonded (dashed lines) three-dimensional network.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C7	1.3118 (14)	O1-C8	1.2157 (13)
N1-C8	1.3699 (15)	O2-C11	1.2191 (14)
N2-C9	1.3401 (14)	C6-C7	1.4855 (15)
N2-C8	1.4112 (15)	C10-C11	1.4863 (15)
N2-N3	1.4204 (13)	C11-C12	1.4835 (16)
C9-N2-C8	121.83 (10)	C9-C10-C7	116.27 (10)
C9-N2-N3	117.73 (10)	C7-C10-C11	124.27 (10)
O1-C8-N1	123.68 (11)	O2-C11-C10	120.68 (11)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	119.44 (11)	C12-C11-C10	118.46 (9)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	134.50 (12)	$\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 2$	-36.96 (17)
C5-C6-C7-C10	145.71 (12)	O2-C11-C12-C17	140.80 (12)
C9-C10-C11-O2	135.53 (12)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	-40.29 (15)

Table 2
Hydrogen-bonding geometry ($\left(\AA{ }^{\circ}\right)$.
$C g P$ is the centroid of ring $B(\mathrm{C} 12-\mathrm{C} 17)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A $\cdots \mathrm{O}^{\mathrm{i}}$	$0.91(2)$	$2.37(2)$	$3.110(2)$	$140(1)$
N3-H3B $\cdots 1^{\text {ii }}$	$0.92(2)$	$2.22(2)$	$3.134(2)$	$166(2)$
N3-H3 $\cdots C g P^{\text {iii }}$	$0.91(2)$	$2.90(2)$	$3.341(1)$	$112(1)$
C3-H3C $\cdots C P^{\text {iv }}$	$0.95(2)$	$2.90(2)$	$3.692(2)$	$142(2)$

[^2]
organic papers

All H atoms were located in a difference Fourier map and were refined isotropically. $\mathrm{N}-\mathrm{H}$ distances are 0.905 (18) and 0.936 (19) \AA, and the $\mathrm{C}-\mathrm{H}$ distances range from 0.947 (14) to 0.993 (13) \AA.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuzmayis University, Turkey, for the use of the Stoe

IPDS-II difractometer (purchased under grant F. 279 of the University Resourch Fund).

References

Altural, B., Akçamur, Y., Sarıpınar, E., Yıldırım, I. \& Kollenz, G. (1989). Monatsh. Chem. 20, 1015-1020.
Çetin, A., Cansiz, A. \& Digrak, M. (2003). Heteroatom. Chem. 14, 345-347. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Reinert, H., Weiss, R. \& Seylers, H. (1969). Z. Physiol. Chem. 350, 1310-1320.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sönmez, M., Levent, A. \& Şekerci, M. (2004). Russ. J. Coord. Chem. 30, 695699.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[^1]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0564 P)^{2}\right.$ $+0.0428 P]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.15 \mathrm{e}_{\AA^{-3}}$
 $\Delta \rho_{\text {min }}=-0.13 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.033 (4)

[^2]: Symmetry codes: (i) $1-x,-y,-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1-x,-y, 1-z$; (iv)
 $2-x,-y,-z$.

